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Abstract. A simple prototype model for a differential flow reactor in which the possible initiation and propagation

of a reaction-diffusion-convection travelling-wave solution (TWS) in the simple isothermal autocatalytic system
A+mB — (m+ 1)B, ratekab™ (m > 1) is studied with special attention being paid to the most realistic cases

(m = 1, 2). The physical problem considered is such that the readtgptesent initially at uniform concentration)

is immobilised within the reactor. A reaction is then initiated by allowing the autocatalyst species to enter and to
flow through the reaction region with a constant velocity. The structure of the permanent-form travelling waves
supported by the system is considered and a solution obtained valid when the flow rate (of the autocatalyst) is very
large. General properties of the corresponding initial-value problem (IVP) are derived and it is shown that the TWS
are the only long-time solutions supported by the system. Finally, these results are complemented with numerical
solutions of the IVP which confirm the analytical results and allow the influence of the parameters of the problem
not accessible to the theoretical analysis to be determined.
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1. Introduction

There is considerable current interest in the behaviour that can be supported by reaction-
diffusion systems in which participating species have differing diffusivities, see for example
[1-3]. The major impetus for such interest lies with the predictions of Alan Turing [4]
who suggested that, for systems with appropriate kinetic feedback mechanisms, so-called
‘diffusion-driven’ instabilities may cause the spontaneous evolution to spatial patterns in
initially homogeneous domains. The significance of such patterning for morphogenesis or
animal coat markings have been explored [5] and recently Turing patterns have been created
in the laboratory [6]. As discussed by Lengyel and Epstein [7], the practical requirements for
this particular instability are not yet readily realised in available systems, primarily because of
the current rudimentary state of selective control of individual species diffusivities. Recently,
however, an alternative experimental device for producing a related effect has been proposed by
Menzinger and Rovinsky [8—11], the ‘differential flow reactor’. This comprises a flow system

in which one (or more) of the key species can be effectively immobilised with the remaining
species flowing through the reactor producing an ‘open’ system. We can achive this situation,
for example, by creating the reaction domain as a matrix of ion exchange beads onto which
selected species may become adsorbed via electrostatic interactions. Such a configuration
has been employed by Menzinger and Rovinsky leading to a new kind of instability — the
differential-flow-induced chemical instabiligDIFICI). The requirements on the reaction
kinetic mechanism underlying this phenomenon have been shown to be effectively equivalent
to those underlying the Turing bifurcation but the conditions in terms of the diffusivities of
feedback (activator) and reactant (inhibitor) species are different and perhaps more readily
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accessible in practice. In the DIFICI case, the structures arising from the primary bifurcation
in systems with ‘excitable’ kinetics comprise a train of travelling waves of permanent form
propagating with constant velocity. The interaction of DIFICI and Turing instabilities has also
been considered and shown to produce complex time dependent spatial structures including
propagating stripes and spots [12].

In the present paper, we seek to investigate one of the fundamental ‘component processes’
leading to the DIFICI instability by pruning the kinetic mechanism to a single feedback
process in the form of a single isolated autocatalytic step that, in a system without flow, would
support a simple travelling wave front (with no subsequent recovery process). For an analysis
of the DIFICI mechanism when applied to the cubic autocatalator kinetics in a finite reaction
domain with periodic boundary conditions applied at its ends (as a model for a flow reactor
with 100% recycling of the intermediate products) see [13].

We assume an isothermal system with kinetics of the form

A+mB — (m+1)B, rate= kab™ (1.2)

wherea, b are the concentrations of the reactahtand the autocatalysB, k is the rate
coefficient andm is the power of the autocatalytic step. We consider a situation in which
only reactantd is present initially within the reactor at uniform concentratignand that
this species is immobilised within the reactor. We then initiated reaction by allowing the
autocatalystB to enter and to flow through the reaction region with a constant velocity
u such that the flux which enters the reaction domain (from a reservoir in whighin
constant concentration) is proportional to the difference between the concentration at the inlet
and the concentration in the reservoie(mathematically we will consider Robin boundary
conditions). We make the further assumption (consistent with the experimental configuration)
that the reactor is sufficiently long for end effects to be ignored and is sufficiently narrow so
that transverse variations in concentrations can be neglected, with these then being described
in terms of the co-ordinate measuring distance along the reactor.

This leads us to study the system of reaction-diffusion-advection equations:

da =
o ob . % .

ont > 0,0 < T < oo. The initial conditions are (from above)

=l

a(z,0) =ag, z>0, (z,00=0, z>0. (1.4)

The boundary conditions fdrare of the Robin-type at = 0

DBa—l,) =mp(b—1bo), >0 (1.5)
oz

(wheremp is the mass-transfer coefficient abglis the reservoir concentration &) and
uniform conditions at large distance from origin

b—0 as o0, t>0. (1.6)
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To make Equations (1.2—-1.3) dimensionless we write

B B my 1/2
a = aoa, b = agb, tkag' = t, T <k&> =z, a.7)
Dp

in terms of which Equations (1.2, 1.3) become

% = —ab™, (1.8)
o o
&‘ng%—@-{—ab , (19)

with initial and boundary conditions

a(z,00=1 on z >0, b(z,0) =0, on x>0, (1.10)
0b
—=ub—po) at z=0, t>0, (1.11)
ox
b—0 as z—o0, t>0 (1.12)

where the dimensionless parameters are

_bo
ag

¢ = Bo (1.13)

mp
(the flow parametgr  p = (ka§'Dg)¥2’

u
(kag'Dp)Y/2

A system similar to (1.8-1.12) (but significantly without the flow term and with Dirichlet
boundary conditions) has been considered by MeteHl. [14]. There the main interest
was concerned with studying the possible initiation and structure of travelling wave solutions
(TWS), especially when large powers of autocatalysis were taken. It was found that, for
m > 7-75, the permanent form TWS that were supported by the system lost stability through
longitudinal disturbances and an oscillatory wave structure was then obtained. For even higher
values ofm this oscillatory behaviour became unstable leading to a chaotic response.

In the present work we limit attention to much smaller but perhaps more realistic powers
of autocatalysisj.e. we consider the cases = 1,2, leading us to discuss the possible
initiation and propagation of reaction-diffusion-advection waves in the above system with
either quadratic or cubic autocatalysis. The main interest in using such an autocatalytic step
is to consider the cases with, = 1,2 which are the most physically relevant and have
been successfully used to model real solution-phase kinetics (such as iodate-arsenous acid
reaction [15], the Belousov—Zhabotinsky reaction [16]), radical chain-branching oxidation
reactions [17], or enzyme reactions, such as glycolysis [18]. Reaction-diffusion waves in
systems governed by such autocatalytic kinetics have been analysed previously in great detail
(see [19-25]). However, we are concerned here with the change in behaviour of the long time
solutions of our system caused by the changes in the flow paramétér will pay attention
also to the form of the boundary conditions which we impose-at0 (which are physically
more realistic than Dirichlet boundary conditions as constant transfer between reservoir and
the reactor is not possible to achieve in practice).

We start by considering the travelling waves of permanent form that are supported by
Equations (1.8, 1.9).
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2. Permanent-form travelling waves

Previous studies of systems described by autocatalytic kinetics, [14, 19-25] for example, have
shown that a consideration of the corresponding travelling wave equations gives important
insight into the nature of the full problem. We find this also to be the case here. A travelling
wave solution (TWS) is a hon-negative, nontrivial solution to Equations (1.8, 1.9) expressed
in terms of the single travelling co-ordinate

y =x — vt, (2.1)

wherew is the constant wave speed.
Thus itis natural to study this class of solutions for the present model and we do so for the
general situation whem > 1. This leads us to consider the travelling wave equations:

va' — ab™ =0, (2.2)
V'+ (v —¢)t/ +ab™ =0 (2.3)

on —co < y < oo (where primes denote differentiation with respect;josubject to the
boundary conditions

a—1, b—0 as y— oo (2.4)

(so that the wave is propagating into the unreacted part of the system) and that conditions are
uniform at the rear of the wave. This requires that

a — ag, b—bs as y— —oo, (2.5)

wherea, andb, are constant, which will depend on the parameters of the system and where,
from the Equations (2.3, 2.4) at least onexgfor b; must be zero. Finally, we note that for

a TWS to emerge as the long time solution of our initial-value problem (1.8-1.12) we must
have that > 0.

2.1. (ENERAL PROPERTIES

The general properties of TWS (for the case whéris allowed to diffuse but without the
flow term) have been given in Bilingham and Needham [19] and Megkial. [23] and for
the situation wherel is immobile for general powers afi, again without flow, by Metcalét
al. [14]. There are, however, significant differences in the present situation so that we start by
giving some general properties of TWS for our system.
P1: There are no TWS wiilh = 1 orb = 0. (This follows directly from Merkiret al.[23]).
P2:a(y) > 0,b(y) > 0 on—oo < y < oo (follows directly from Merkinet al.[23]).
P3:as =0,v > ¢, b, = # > 1.
If we integrate Equation (2.3) once and apply boundary conditions (2.4, 2.5) we obtain

(v — P)bs = /OO ab™ dy > 0, (2.6)

from P2. Hence we must hawve> ¢ andbs # 0, from which it follows thais = 0, with the
boundary conditions that must hold at the rear of the wave being

a— 0, b—b;>0 as y— —oo. 2.7
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If we now add Equations (2.2, 2.3), integrate once and apply boundary conditions (2.4) we
obtain

b +v(a+b—1) — ¢b=0. (2.8)

Finally, if we now apply boundary conditions (2.7) we get

v
bs = 1. 2.9
= (2.9)
P4:a is strictly monotone increasing andOa(y) < 1.
This follows from (2.2, 2.4) and P3.
P5:b is strictly monotone decreasing abd> b(y) > 0 on—oco < y < oo.
Equation (2.3) can be written as

Yy
B = —ev=9 / =9 qh™ ds < O, (2.10)
—00
from P2 and the result follows.

b
P6 : a+b>a+b—>1 on —oo<y<oo. (2.11)
S

This results from Equation (2.8), P3 and P5 noting that (2.11) can be written as

o /
1—a—<” ¢>b:b—<0.
v

v

Finally, we obtain some bounds for the speed of propagation. To do so we combine
Equations (2.2, 2.3, 2.8) in a single equationfonamely

/! / m b b,bm
V' +(v—)b +0"[1—— ) — =0. (2.12)
bs v
On integrating (2.12) we find that
ﬂ—(v—qs)b——/oobmﬂ@—ﬂ)d <0 (2.13)
v(m + 1) Y A bs v ’

(from P5) giving(v — ¢)2 > (b™~1/m + 1) > (1/m + 1) (from P3). Therefore

P7: v>¢+(1/vVm+1).
The above bound does not appear to be very sharp as the following result shows, at least for
the casen = 1 (quadratic autocatalysis).

P8: Inthe caser = 1,v > vmin = ¢ + 2.
To establish this result we require the behaviour of a TWS at the front of the wave. On
linearizing Equation (2.3) around the steady-state (1,0) we find the asymptotic form

V'+(v—¢)t) +b=0. (2.14)

Equation (2.14) has solutions of the form éxp) with Ay = (¢ —v +/(v — $)2 — 4). We
require the discriminant to be positive otherwise damped oscillatory solutions associated with
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complex values oA would result leading to negative (physically unacceptable) values for
We also have that

v > ovmin then b~ Ape*-Y as y— oo, (2.15)
v =uvmin then b~ (Aogy+ Bo)e™? as y— oc. (2.16)

Finally, we note that, forn = 1 with v = vmin

4. ®
ho=1+2 (2.17)

from P3.

2.2. DLUTION FOR ¢ LARGE FOR CUBIC AUTOCATALYSIS

The wave speed for quadratic autocatalysis= 1) has already been given by P8. Here we
develop an asymptotic solution for the system (2.2, 2.3) withk 2 and subject to boundary
conditions (2.4, 2.7) valid fop > 1. A consideration of the equations suggest that, for large
¢,v ~ ¢ at leading order, which is also suggested by P8. This leads us to start our solution by
putting

v=¢+ V¢13, (2.18)
B=¢ 2%, (2.19)
Y = ¢Y3y, (2.20)

and leavex unscaled. This results in the equations
(14 ¢~%2V)d' —aB? =0, (2.21)
B" +VB' +aB?=0, (2.22)
subject to (from (2.4-2.7))
a— 1 B—0, as Y — oo, (2.23)

1 -2/3
@0, B%Bs:# as Y - —o (2.24)

(here primes denote differentiation with respecYio From (2.21-2.24) an expansion of the
form

a(Y,$) = ao(Y) + ¢~ Par (V) + -+,
B(Y,¢) = Bo(Y) + ¢ ?*By(Y) + -+, (2.25)

V(p)=Vo+¢ Vi +---
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is suggested. At leading order we have
ay — apB3 = 0, (2.26)
BY + VoB} + agBE = 0, (2.27)
subject to (from (2.23-2.24))

ag — 1, Bp—~0 as Y — oo, (2.28)

1
ag — 0, By — 7 as Y — —oo. (2.29)
0

If we now add Equations (2.26, 2.27) and apfly_ - - - dY” with boundary conditions (2.28,
2.29) we find that

Bb=1—ao— VoBo. (2.30)

Thus we have to solve the Equations (2.26, 2.30) with boundary conditions (2.28, 2.29). A
consideration of these equations along the general lines given in [20], shows that there is
a unique minimum speethmin > 0 such that for allV' > Vg min the solution forBy has
algebraic decay a8 — oo and that the solution has exponential decayyass oc only

for Vo = Vomin. TO determine the solution and this minimum spégd= Vo min We have to
proceed numerically, finding that

We are now in a position to compare these results, given by the asymptotic solution, with
the full numerical solution of the initial system (2.2, 2.8). To do so note that, from (2.18, 2.19,
2.25)

0™ ~ $(14 0-90497% 3 4 ..., (2.32)
b* ~ 1-105008%/3 + - .. (2.33)

at leading order (where the superscrips‘denotes asymptotic). In Figure l1a we show
expression (2.32) by the dotted line, the agreement between the numerically computed values
and those obtained from the asymptotic theory is extremely good even at quite moderate values
of ¢. This is not unexpected as a consideration of the higher order terms in the expansion leads
to a leading order correction df¢~%/3, with V1 determined numerically &g, = 0-28652.

As a further check of our asymptotic analysis we also plofted ¢)¢_2/3 with v determined

from the numerical solution of Equations (2.2, 2.8). The results are shown in Figure 1b, where
they appear to be approaching the asymptotic vala%j#n as¢ increases.
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Figure 1.(a) A graph of the numerically computed minimum speggd (plotted against) for the TWS for the
case of cubic autocatalysis: = 2). The dotted line represents the asymptotic expansion (2.32) and the full line

the numerical speed obtained from an integration of the Equations (2.2, 2.8); (b) A giaph ¢j¢ %/ (against
¢) with v as in Figure 1a (obtained from a numerical integration of Equations (2.2, 2.8)) showing the asymptotic

approach td/’o,‘nfin. The numerical method used for these figures is similar to that explained in [14].
Finally we note that this analysis fe# = 2 can be extended in an obvious way to general
powers ofm, for which the appropriate scalings are

v=0¢+¢V, b=¢/MOIB Y=gy y=—" (m>1). (2.34)

3. The initial-value problem

Here we consider the solution of the initial-value problem (IVP) (1.8-1.12) for the two cases
m = 1 andm = 2. We start in 3.1 by proving that our IVP is well-posadt.(admits a
unique solution at least locally in time). Then we show in 3.2 that the solution can be extended
globally in time by giving a priori bounds for the solution in the cases= 1 andm = 2.
Finally, we discuss in 3.3 the numerical solutions of the IVP.

3.1. LOCAL EXISTENCE AND UNIQUENESS

Our main objective in this section is to show that the IVP (1.8-1.12) has local existence and
uniqueness. The technical difficulty is having to work in an unbounded spatial domain.

R1: There is a@p > 0 such that the IVP (1.8-1.12) has a unique solution(iot) €
(07 OO) X [07 TO)

For the proof we apply the methods described in Henry [30]. To do so we need to recast
our IVP in the following functional setting. We tale= (0, oc) and

D(A) = C?(Q) x C*(Q) xR (3.1)

and define the linear operator

A( y=(o-F 590 (3.2)
uy, u2, - * Tz dz’ ) .
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provideduy; — 0 asz — oo and—(duz/0x) + puz = A = pfo onz = 0. We can can then
extendA to a linear closed operator in the usual way (which we will still denotedlpyn
X = L?(Q) x L?() x R. Ais then sectorial according to a resultin Henry [30, pp. 20]. With

fiX1=D(A) - X,  f(ui,uz ) = (—uuz’, u1uy’, 0) (3.3)
our IVP can be posed (wWithl = (u1,u2,\) € X) as
U+AU=f on X, U(0)=(1,0,0) € X. (3.4)

It is clear thatX; c L?(Q) x L?(2) x R and thatf is locally Lipschitz inU on X;. Thus
we can apply Theorem 3.3.3 from Henry [30, pp. 54] and deduce that theflgis-& such
that the problem (3.4) has a unique solution(6r7p). In fact we can readily show (using
classical regularity theory results) tHate C>°(Q2) for 0 < ¢t < Tp.

3.2. (Q.OBAL EXISTENCE AND UNIQUENESS

R2: Leta(x,t),b(z,t) be a solution of out IVP fofz,t) € (0,00) x [0,T], with T > 0
arbitrary. Then

O<a(z,t) <1,  0<b(x,t), (3.5)

forall (z,t) € (0,00) x [0,T1].

(a) The proof for the left-hand inequality follows from the fact that the redibr=
{(a,b),a,b > 0} is a positively invariant region for IVP with initial conditions (1.10) §h
for all z > 0. By considering the kinetic tergh = (—ab™, ab™) and taking due regard of the
behaviour ag: — oo along the lines described by Merkat al. [27] we see that the system
(1.8, 1.9) isf-stableand the result follows by applying theorem 14.11 from Smoller [28].

(b) For the right-hand inequality farwe readily see that is decreasing im and from the
initial condition (1.10) the result follows directly.

We now establish global existence, starting with the ease 1 (quadratic autocatalysis).
To do so we obtain a supersolution tousing scalar operators as follows. From (1.8) and R2
we readily deduce that

@ — a_zb +¢@
ot 0x? Oz

forall z,¢ > 0. By considering the linear parabolic operator

—b=—b(1-a) <0, (3.6)

Llu] = w — tgy + duy — u, (3.7)

we see that = b andii = 3 € are a subsolution and a supersolution respectively, since from
(3.6), (1.9, 1.10, 1.11) we have that

andatz =0,t >0

0 ou
—a—u+uu=uﬁo<uﬁoet=——u+uu- (3-9)
€T €T
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From (3.8, 3.9) it then follows, using the scalar comparison theorem for parabolic operators
(Grindrod [29]), that forn = 1

R3: b(z,t) < Bo€ forall z,t>0. (3.10)

Results R2 and R3, giving a priori bounds for the solutions of the IVP, then guarantee global
existence and uniqueness (ior = 1), on applying Lemma 14.3 and Theorem 14.4 from
Smoller [28].

A more refined analysis is required to obtain a similar resulk farthe casen = 2 (cubic
autocatalysis). To do this we apply an idea from Weissler [31] and start by consider the kinetic
system associated to our VP

a; = —ab?, by = ab?, a(0) = 1, b(0) = b > 0. (3.11)

It is readily deduced that solutions to (3.11) exist globally and are bounded-fdr. In fact
b is monotonically increasing with — 1 4 by ast — oo anda is monotonically decreasing
with a — 0 ast — oco. We denoted by3(bo, t) the solution to (3.11)) fob.

Next we consider the following initial-value problem

Ut = Ugy — PUa, (3.12)
u(z, 0) = by, —Uugy+pu=pupf at r=0 u— G as x — oo, (3.13)

with 1, B2 > 0. It is easily established that, fo§ # (2, (3.12—3.13) has a unique positive
solution which we denote by(z, ), which is monotone on the spatial doma&h oc). We
now claim that, with appropriate choices fay, 51, 32, b(z,t) = B(u(z,t),t) is an upper
solution forb as a solution to our IVP (1.8-12). To see this note that

b(z,0) = by > 0 = b(x, 0), (3.14)
—by+pb=ppr>pbo=—by+pb at z=0, t>0 if B> fy, (3.15)
b— >0 and b—0 as z — oo. (3.16)

Also, for givenz, ¢t in our domain we consider the nonlinear parabolic operator
Nu] = up — ugy + Puy — au®. (3.17)

We note that (1.8) gives with initial conditions (1.10) that

a(z,t) = exp(— /ot b (x, ) ds) <1 (3.18)

and we have that is a function ofb only, thus givingV as a scalar operator. Then we have
that

N[b] =0, (3.19)

N[b] = Bu(ut — thgy + ptiz) + Bi — Byyu2 — (14 u — B)B? = — By, u?. (3.20)
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Thus we are naturally led to study the behaviouBgho, t) with respect withby. We recall

that from (3.11) we havéy < B(bo,t) < 1+ bg for all ¢ > 0. Furthermore, the following
lemma gives the required information on the behaviour of the solugig, ) with respect
to the initial condition.

LEMMA 1. For all bg > 0we have

(1) (0B/0bg) > Oforall t > 0,
(2) (0°B/0b3) < Ofor all t > 0 andbg > 0 sufficiently large(in practiceby > 25 suffices.

The proof of these results is given in the Appendix. In view of result (2) of the above lemma
we can always assure that the final term in (3.20) is positive. In fact we have form the above
that

(i) B, > 0forallz,t >0,
(i) Byy < Oforallz,t > 0andu > 0 sufficiently large.

To see thab is an upper solution we notice that the solutioaf the initial-value problem
(3.13-3.14) can always be made sufficiently large with suitable choicég,i6t, 5> > O,
and we again conclude, on using the comparison theorem for the scalar parabolic ajerator
[29] that form = 2

R4, b(z,t) < b(z,1), (3.21)

with b uniformly bounded.

The a priori bounds given in R2 and R4 establish global existence and uniqueness for
m = 2, again from Smoller [28]. An examination of these results (in particular the method
of obtaining an upper solution fégrwhenm = 2) shows that the method can be extended to
general integer values af, > 1 in an obvious way, giving global existence and uniqueness
for these cases as well. We expect from physical considerations (and this is also confirmed
by the numerical results presented in the next section) that for.x@achl the solutions to
the corresponding IVP have global existence and uniqueness property. However, this is left
unresolved at this stage.

Our results extend significantly the corresponding properties of the solutions to the IVP
considered in previous work on simple autocatalytic reaction-diffusion systems (see [14] and
references therein, for example) where upper bounds on the autocatalyst concentration were
not given previously.

We now consider numerical solutions to the initial-value problem (1.8-1.12). These confirm
our analytically derived predictions and extend the results to general values of the parameters.

3.3. NUMERICAL SOLUTIONS OF THEIVP

We solved the initial-value problem (1.8-1.12) using the method described in Metrkin

al. [23]. This is essentially a Crank-Nicolson discretization method coupled with Newton-
Raphson iteration to solve the systems of nonlinear algebraic equations that are formed at each
time step. The algorithm allows an adjustable time step to be used so as to try and maintain a
prescribed overall accuracy. We performed a relatively large set of numerical integrations by
varying our parametexs, i, So. In the results described below we chose representative values

of these parameters (similar results were obtained for all the cases we tried).
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We start our discussion by first taking the case with quadratic autocatélysis 1).
Figures 2a, 2b show concentration profiles doand b, taken at equal time intervals for
the casep = 1.0, p = 1.0, fp = 1-0. These profiles show the formation and propagation
of travelling waves of permanent-form approaching a steady velocity insreases. We
have confirmed this by numerically computing the position and the velocity of the reaction-
diffusion-advection fronts. This has been done by two different procedures (which enabled
us to check the accuracy of each). Specifically we computed the position of the front as the
point whereu(z,t) = 0-5. Then these values where used to compute the velocity of the front
by numerically differentiating (with central differences). The other procedure was to use an
integral method which essentially used the approximated formyle: [7°(1 — @) dz (with
x, denoting the referenced front position and where the integral was computed using the
trapezium method). Both these two methods gave very good agreement. We can see from
Figure 2b that the travelling front left behind a region whigee 1-5 = b, (in agreement with
the result P3). Also the large time velocity of the waves is, in this aase3 = vin = ¢ + 2
(the minimum speed as given from P8). This can be seen in Figure 4 where we plot the position
of the travelling waves fronts evolved from the initial-value problem for the casedd, 1,5
(with ¢ = 1.0, Bp = 1-0). We can see that in all the cases the front positions describe straight
lines in time with constant slope giving the minimum spegd = ¢ + 2.

We have also studied the influence of the boundary conditian &t O by varyingu
(the parameter related to the mass transfer of the autocatalyst). In Figure 3 we show the
concentration profile ob for the caseu = 0-1, ¢ = 1.0, fp = 1.0 in order to compare
it with the case in Figure 2b. Both graphs show that as time increases the concentration of
the autocatalyst at the boundary= 0 approaches that of the reservoir concentratigior,
equivalently,

lim — =0, (3.22)

(in which case the Robin boundary conditiorxat 0 transforms to a Dirichlet type boundary
condition) a result which shows that the long time structure arising from the initial-value
problem is independent of the influence of the boundaries provided the flow reactor is very
long. Also, our numerical integrations show (and the above figures depict) that the rate of
this approach ob to Gy atz = 0 is dependent on the value pf the larger the value qi
the faster the convergence. Another common feature seen lapittdiles is that there is an
initial over-production in the autocatalyst which is then spread out by convection and diffusion
before the reaction becomes the dominant part. As expected this is less pronounced in the case
in Figure 3 (smaller value gf) comparing with that in Figure 2b. Finally, we add that result
(3.22) was obtained in all the cases we tried.

Figures 5a, 5b show the influence of the reservoir concentration (reflectégl) lnypon
the development of the travelling wave front. Here we tgok 1.0, = 1-0 and we varied
Bo (by takingGp = 2:0 in Figures 5a angdlp = 0-5 in Figure 5b). This corresponds to the
opposing cases ‘over-driven’ and ‘under-driven’ in the autocatalyst concentration initiation,
respectively. We see that in all the cases the long time wave structure which develops is
independent of the value @ leaving behind a region whebe= 1.5 = b, and travelling with
the minimum possible velocity = 3 = vmin = ¢ + 2 as given by P3 and P8, respectively.
In all cases the long time structure is a travelling reaction-diffusion wave of permanent form
propagating with its minimum possible speed. At the rear of this is a region in which the
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the concentration of reactantis zero and that of autocatalyBtis b, (as given by (2.7)). There
is then an adjustment of this concentrationsp(the autocatalyst reservoir concentration)
through a convection-diffusion wave which propagates with sgeedvmin) and in which

bs —0Bo) /M _.2 T — ¢t
b(x,t)wﬁo—i—i( : B)/ e ds, n= ¢ , ast — co. (3.23)
NS o 2Vt
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Figure 2 Concentration profiles shown at equal time intervalsgfos 1.0, u = 1.0, 8o = 1.0 for (a)a, (b) b
(quadratic autocatalysis). We see the approach to a TWS travelling with constant velocity.
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Figure 3 Concentration profile fob for ¢ = 1.0, Figure 4. Successive positions of the TWS for the
p =01, 8o = 1.0 (quadratic autocatalysis). casey = 1.0, 8 = 1.0 and three different values of
¢ = 0,15 (quadratic autocatalysis).
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Figure 5 The influence of the boundary condition (quadratic autocatalysis): concentration proflésfor= 1.0,
1 = 0-1 and two different values g¥: (a) 5o = 0-5, (b) Bo = 2:0.
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Figure 6 Concentration profiles for the cage= 1.0, 8o = 1-0 for (a)a, (b) b (cubic autocatalysis).

We now consider the case of the cubic autocatalysis= 2). From the above discussion
we have seen that any wave structure which develops as a long time solution of the initial-
value problem (1.8-1.12) is in effect independent of the type of boundary condition applied
atx = 0, provided this gives a correct qualitative description of the contact between the
reservoir and the flow reactor (see (3.22)). We chose, therefore, to apply (without any real
loss in generality) a Dirichlet boundary condition at the boundary 0 (b(0,¢) = fo, for
all ¢ > 0) for the numerical results described below. Figures 6a, 6b present the concentration
profiles fora andb in the casep = 1-0, 5o = 1-0. These show the propagation of travelling
waves of permanent form which move with constant velocity. The numerical integrations give
that theb travelling wave leaves behind a region whérie a constanb, (with b, = 1-854)
and that this wave is moving with the minimum possible speed vmin = 2:172 in this
case. The value attained at the rear of the wave is independent of the concentration of the
reservoir (being an intrinsic feature of the long time structure developed) as several numerical
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integrations with different values g show in Figures 7a (wittfy = 0-5) and 7b (with

Bo = 2-0). Finally, we checked the influence of varying the flow ratepon the movement

of the reaction-diffusion-convection front. Figure 8 shows the result of the front positign,

as a function of time for three different flow rat¢ghere¢ = 0,1-0 and 50 respectively)
showing that the long time evolving structure is travelling with a constant velocity given by
the slopes of the straight lines appearing in the figure. These slopes correlate well with the
values of the wave speed obtained from the numerical integrations of Equations (2.2, 2.3). As

expected the larger thgthe faster the wave propagates.
2.0

AW A

1.5
1.0 1.0
05 0.5-]
0.0 k k | k - | 00 T k T k [ k |
0 50 100 150 200 0 50 100 150 200

X X

Figure 7. Concentration profiles fap = 1.0 and two different values ofo: (a) Bo = 0-5, (b) Bo = 2-0 (cubic
autocatalysis).
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Figure 8 Successive positions of the TWS 85 = 1.0 and three different values af. ¢ = 0,1,5 (cubic
autocatalysis).
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4. Conclusions

In this paper we studied a simple prototype model for a differential flow reactor which
accounts for the effects of applying a flow of autocatalyst in a system with simple reaction
kinetics. This problem falls into the larger context of studying the possible destabilisation
of the homogeneous reference state of a chemical system which causes the medium to self-
organise into a pattern of travelling waves through the differential flow instability, the so
called DIFICI mechanism as mentioned in the Introduction. However, in all the previous work
on the DIFICI context the theoretical framework was set up using a circular flow reactor
(with corresponding periodic boundary conditions being applied at its ends). This is not very
realistic and thus motivates our present work which considered a differential flow reactor in
a form of a long, thin tube (with the transversal effects being neglected). A reaction is then
initiated based on the autocatalytic kinetiést mB — (m + 1) B, ratekab™ (m = 1,2).

The physical problem considered is a practical experimental situation in which the re&ctant
(present initially at uniform concentration everywhere) is immobilised within the reactor. The
differential flow mechanism manifests then via the flow (with constant velocity) and diffusion
of the autocatalytic species through the reaction region.

We considered the spatio-temporal structures supported by such a physical configuration
by analysing the resulting equations in some detail. Although no instabilities were found
we showed that the system can support permanent form travelling-wave solutions (TWS),
establishing the properties of these minimum speed TWS in terms of the parameters of the
problem. Further insights into these solutions were provided by the analysis of the full initial-
value problem (IVP) for which, in the main two cases of intefest= 1, 2) we established
that that these are the only long-time solutions supported. This follows from the properties
of uniqueness and global existence for the solutions of the IVP derived in Section 3.2. The
numerical solutions have confirmed the analytical results and have shown that in all the cases
the long time solution evolved into a travelling reaction-diffusion wave with permanent form
propagating with its minimum possible speed thus suggesting that these are stable. At the rear
of this wave there is a region in which the concentration of reactantzero with that ofB
given by (2.7). Then there is an adjustment of this to the autocatalyst reservoir concentration
through a convection-diffusion wave which propagates with speedmn; these two waves
are consequently separating relative to each other.

We expect to encounter more interesting behaviour in a differential flow reactor with
a similar physical configuration but with chemistry being based on a more realistic (and
complicated) kinetics such as the cubic autocatalator (or the Gray—Scott model). This situation
is presently being considered in detail by the authors.

Appendix

Here we establish the validity of the assertions (1) and (2) of Lemma 1.
Equation (3.11) is readily solved to get, on using the notatienby > 0

In B IN(1+c— B) 1 Inc 1

1+c2 (1402 Blto (1+02 clto +t forall t>0. (Al)

From (A1) we then find, with the notatioB’ = 9B/dc, that
(14 ¢)B' =2(cB)*(1+c— B)t+ B?(14+¢c—B)+ B >0 forall ¢>0, (A2
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since
c<B<1l+c¢ foral t>0. (A3)

This establishes the first assertion of the lemma. We then differentiate A2 once more with
respect ta: to get, after some calculation

¢B" = B?G(c, B, t), (Ad)
whered is the polynomial
G(c,B,t) = (1+ ¢ — B)(8t*c°B + 6tc* + 8t°c*B
—122¢*B? + 8tc3B 4 ¢? — 124(c¢B)? +
+8tc?B — 2¢ + 2¢B + 2B — 3B°). (A5)

This can also be written as

G(c, B,t) = (14 ¢ — B)(Ca(c, B)t? + C1(C, B)t 4 Co(c, B)), (A6)
with

Ca(c, B) = 4c*B(2 4 2¢ — 3B), (A7)

Ci(c, B) = 2c3(—6B% + 4(1+ ¢)B + 3¢?), (A8)

Co(c, B) = (¢ — B)(c — 2+ 3B). (A9)

From (A7-A9) it is readily established that

Cy<0 forall ¢>2, C1>0 and Cop<0 forall ¢>0. (A10)
From (A4, A6—A10) we then have that the sign®f is given by the sign of

4C>Co — C% = —4c>(—2(1 + ¢)B? + 16(1 + ¢)°B + 9¢%), (A10)
which is found to be negative for all

c>c* =249738.... (A11)

Thus we conclude that for all > ¢* we haveB” < 0 for all ¢ > 0 which establishes the
second assertion and our lemma is proved.
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