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Abstract. A simple prototype model for a differential flow reactor in which the possible initiation and propagation
of a reaction-diffusion-convection travelling-wave solution (TWS) in the simple isothermal autocatalytic system
A+mB ! (m+ 1)B, ratekabm(m > 1) is studied with special attention being paid to the most realistic cases
(m = 1; 2). The physical problem considered is such that the reactantA (present initially at uniform concentration)
is immobilised within the reactor. A reaction is then initiated by allowing the autocatalyst species to enter and to
flow through the reaction region with a constant velocity. The structure of the permanent-form travelling waves
supported by the system is considered and a solution obtained valid when the flow rate (of the autocatalyst) is very
large. General properties of the corresponding initial-value problem (IVP) are derived and it is shown that the TWS
are the only long-time solutions supported by the system. Finally, these results are complemented with numerical
solutions of the IVP which confirm the analytical results and allow the influence of the parameters of the problem
not accessible to the theoretical analysis to be determined.
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1. Introduction

There is considerable current interest in the behaviour that can be supported by reaction-
diffusion systems in which participating species have differing diffusivities, see for example
[1–3]. The major impetus for such interest lies with the predictions of Alan Turing [4]
who suggested that, for systems with appropriate kinetic feedback mechanisms, so-called
‘diffusion-driven’ instabilities may cause the spontaneous evolution to spatial patterns in
initially homogeneous domains. The significance of such patterning for morphogenesis or
animal coat markings have been explored [5] and recently Turing patterns have been created
in the laboratory [6]. As discussed by Lengyel and Epstein [7], the practical requirements for
this particular instability are not yet readily realised in available systems, primarily because of
the current rudimentary state of selective control of individual species diffusivities. Recently,
however, an alternative experimental device for producing a related effect has been proposed by
Menzinger and Rovinsky [8–11], the ‘differential flow reactor’. This comprises a flow system
in which one (or more) of the key species can be effectively immobilised with the remaining
species flowing through the reactor producing an ‘open’ system. We can achive this situation,
for example, by creating the reaction domain as a matrix of ion exchange beads onto which
selected species may become adsorbed via electrostatic interactions. Such a configuration
has been employed by Menzinger and Rovinsky leading to a new kind of instability – the
differential-flow-induced chemical instability(DIFICI). The requirements on the reaction
kinetic mechanism underlying this phenomenon have been shown to be effectively equivalent
to those underlying the Turing bifurcation but the conditions in terms of the diffusivities of
feedback (activator) and reactant (inhibitor) species are different and perhaps more readily
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accessible in practice. In the DIFICI case, the structures arising from the primary bifurcation
in systems with ‘excitable’ kinetics comprise a train of travelling waves of permanent form
propagating with constant velocity. The interaction of DIFICI and Turing instabilities has also
been considered and shown to produce complex time dependent spatial structures including
propagating stripes and spots [12].

In the present paper, we seek to investigate one of the fundamental ‘component processes’
leading to the DIFICI instability by pruning the kinetic mechanism to a single feedback
process in the form of a single isolated autocatalytic step that, in a system without flow, would
support a simple travelling wave front (with no subsequent recovery process). For an analysis
of the DIFICI mechanism when applied to the cubic autocatalator kinetics in a finite reaction
domain with periodic boundary conditions applied at its ends (as a model for a flow reactor
with 100% recycling of the intermediate products) see [13].

We assume an isothermal system with kinetics of the form

A+mB ! (m+ 1)B; rate= k�a�bm (1.1)

where �a;�b are the concentrations of the reactantA and the autocatalystB; k is the rate
coefficient andm is the power of the autocatalytic step. We consider a situation in which
only reactantA is present initially within the reactor at uniform concentrationa0 and that
this species is immobilised within the reactor. We then initiated reaction by allowing the
autocatalystB to enter and to flow through the reaction region with a constant velocity
u such that the flux which enters the reaction domain (from a reservoir in whichB is in
constant concentration) is proportional to the difference between the concentration at the inlet
and the concentration in the reservoir (i.e. mathematically we will consider Robin boundary
conditions). We make the further assumption (consistent with the experimental configuration)
that the reactor is sufficiently long for end effects to be ignored and is sufficiently narrow so
that transverse variations in concentrations can be neglected, with these then being described
in terms of the co-ordinate�x measuring distance along the reactor.

This leads us to study the system of reaction-diffusion-advection equations:

@�a

@�t
= �k�a�bm; (1.2)

@�b

@�t
+ u

@�b

@�x
= DB

@2�b

@�x2 + k�a�bm; (1.3)

on�t > 0;0 < �x <1. The initial conditions are (from above)

�a(�x;0) = a0; �x > 0; �b(�x;0) = 0; �x > 0: (1.4)

The boundary conditions for�b are of the Robin-type at�x = 0

DB

@�b

@�x
= mB(�b� �b0); �t > 0 (1.5)

(wheremB is the mass-transfer coefficient and�b0 is the reservoir concentration ofB) and
uniform conditions at large distance from origin

�b! 0 as �x!1; �t > 0: (1.6)
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To make Equations (1.2–1.3) dimensionless we write

�a = a0a; �b = a0b; �tkam0 = t; �x

�
kam0
DB

�1=2

= x; (1.7)

in terms of which Equations (1.2, 1.3) become

@a

@t
= �abm; (1.8)

@b

@t
+ �

@b

@x
=

@2b

@x2 + abm; (1.9)

with initial and boundary conditions

a(x;0) = 1; on x > 0; b(x;0) = 0; on x > 0; (1.10)

@b

@x
= �(b� �0) at x = 0; t > 0; (1.11)

b! 0 as x!1; t > 0 (1.12)

where the dimensionless parameters are

� =
u

(kam0 DB)1=2
(the flow parameter); � =

mB

(kam0 DB)1=2
; �0 =

b0

a0
: (1.13)

A system similar to (1.8–1.12) (but significantly without the flow term and with Dirichlet
boundary conditions) has been considered by Metcalfet al. [14]. There the main interest
was concerned with studying the possible initiation and structure of travelling wave solutions
(TWS), especially when large powers of autocatalysis were taken. It was found that, for
m > 7�75, the permanent form TWS that were supported by the system lost stability through
longitudinal disturbances and an oscillatory wave structure was then obtained. For even higher
values ofm this oscillatory behaviour became unstable leading to a chaotic response.

In the present work we limit attention to much smaller but perhaps more realistic powers
of autocatalysis,i.e. we consider the casesm = 1;2, leading us to discuss the possible
initiation and propagation of reaction-diffusion-advection waves in the above system with
either quadratic or cubic autocatalysis. The main interest in using such an autocatalytic step
is to consider the cases withm = 1;2 which are the most physically relevant and have
been successfully used to model real solution-phase kinetics (such as iodate-arsenous acid
reaction [15], the Belousov–Zhabotinsky reaction [16]), radical chain-branching oxidation
reactions [17], or enzyme reactions, such as glycolysis [18]. Reaction-diffusion waves in
systems governed by such autocatalytic kinetics have been analysed previously in great detail
(see [19–25]). However, we are concerned here with the change in behaviour of the long time
solutions of our system caused by the changes in the flow parameter�. We will pay attention
also to the form of the boundary conditions which we impose atx = 0 (which are physically
more realistic than Dirichlet boundary conditions as constant transfer between reservoir and
the reactor is not possible to achieve in practice).

We start by considering the travelling waves of permanent form that are supported by
Equations (1.8, 1.9).
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2. Permanent-form travelling waves

Previous studies of systems described by autocatalytic kinetics, [14, 19–25] for example, have
shown that a consideration of the corresponding travelling wave equations gives important
insight into the nature of the full problem. We find this also to be the case here. A travelling
wave solution (TWS) is a non-negative, nontrivial solution to Equations (1.8, 1.9) expressed
in terms of the single travelling co-ordinate

y = x� vt; (2.1)

wherev is the constant wave speed.
Thus it is natural to study this class of solutions for the present model and we do so for the

general situation whenm > 1. This leads us to consider the travelling wave equations:

va0 � abm = 0; (2.2)

b00 + (v � �)b0 + abm = 0 (2.3)

on �1 < y < 1 (where primes denote differentiation with respect toy) subject to the
boundary conditions

a! 1; b! 0 as y !1 (2.4)

(so that the wave is propagating into the unreacted part of the system) and that conditions are
uniform at the rear of the wave. This requires that

a! as; b! bs as y ! �1; (2.5)

whereas andbs are constant, which will depend on the parameters of the system and where,
from the Equations (2.3, 2.4) at least one ofas or bs must be zero. Finally, we note that for
a TWS to emerge as the long time solution of our initial-value problem (1.8–1.12) we must
have thatv > 0.

2.1. GENERAL PROPERTIES

The general properties of TWS (for the case whereA is allowed to diffuse but without the
flow term) have been given in Billingham and Needham [19] and Merkinet al. [23] and for
the situation whereA is immobile for general powers ofm, again without flow, by Metcalfet
al. [14]. There are, however, significant differences in the present situation so that we start by
giving some general properties of TWS for our system.

P1: There are no TWS witha � 1 orb � 0. (This follows directly from Merkinet al.[23]).
P2:a(y) > 0; b(y) > 0 on�1 < y <1 (follows directly from Merkinet al. [23]).
P3:as = 0; v > �; bs =

v

v��
> 1.

If we integrate Equation (2.3) once and apply boundary conditions (2.4, 2.5) we obtain

(v � �)bs =

Z
1

�1

abm dy > 0; (2.6)

from P2. Hence we must havev > � andbs 6= 0, from which it follows thatas = 0, with the
boundary conditions that must hold at the rear of the wave being

a! 0; b! bs > 0 as y ! �1: (2.7)
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If we now add Equations (2.2, 2.3), integrate once and apply boundary conditions (2.4) we
obtain

b0 + v(a+ b� 1)� �b = 0: (2.8)

Finally, if we now apply boundary conditions (2.7) we get

bs =
v

v � �
> 1: (2.9)

P4:a is strictly monotone increasing and 0< a(y) < 1.
This follows from (2.2, 2.4) and P3.
P5:b is strictly monotone decreasing andbs > b(y) > 0 on�1 < y <1.

Equation (2.3) can be written as

b0 = �e(v��)y
Z

y

�1

e(v��)sabm ds < 0; (2.10)

from P2 and the result follows.

P6 : a+ b > a+
b

bs
> 1 on �1 < y <1: (2.11)

This results from Equation (2.8), P3 and P5 noting that (2.11) can be written as

1� a�

�
v � �

v

�
b =

b0

v
< 0:

Finally, we obtain some bounds for the speed of propagation. To do so we combine
Equations (2.2, 2.3, 2.8) in a single equation forb, namely

b00 + (v � �)b0 + bm
�

1�
b

bs

�
�
b0bm

v
= 0: (2.12)

On integrating (2.12) we find that

bm+1
s

v(m+ 1)
� (v � �)bs = �

Z
1

�1

bm+1
�

1�
b

bs

�
dy < 0; (2.13)

(from P5) giving(v � �)2 > (bm�1
s =m+ 1) > (1=m+ 1) (from P3). Therefore

P7: v > �+ (1=
p
m+ 1).

The above bound does not appear to be very sharp as the following result shows, at least for
the casem = 1 (quadratic autocatalysis).

P8: In the casem = 1; v > vmin = �+ 2.
To establish this result we require the behaviour of a TWS at the front of the wave. On
linearizing Equation (2.3) around the steady-state (1,0) we find the asymptotic form

b00 + (v � �)b0 + b = 0: (2.14)

Equation (2.14) has solutions of the form exp(�y) with �� = 1
2(�� v�

q
(v � �)2� 4). We

require the discriminant to be positive otherwise damped oscillatory solutions associated with

engi650.tex; 30/01/1998; 13:32; v.7; p.5
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complex values of� would result leading to negative (physically unacceptable) values forb.
We also have that

v > vmin then b � A0 e��y as y !1; (2.15)

v = vmin then b � (A0y +B0)e�y as y !1: (2.16)

Finally, we note that, form = 1 with v = vmin

bs = 1+
�

2
(2.17)

from P3.

2.2. SOLUTION FOR� LARGE FOR CUBIC AUTOCATALYSIS

The wave speed for quadratic autocatalysis(m = 1) has already been given by P8. Here we
develop an asymptotic solution for the system (2.2, 2.3) withm = 2 and subject to boundary
conditions (2.4, 2.7) valid for�� 1. A consideration of the equations suggest that, for large
�; v � � at leading order, which is also suggested by P8. This leads us to start our solution by
putting

v = �+ V �13; (2.18)

B = ��2=3b; (2.19)

Y = �1=3y; (2.20)

and leavea unscaled. This results in the equations

(1+ ��2=3V )a0 � aB2 = 0; (2.21)

B00 + V B0 + aB2 = 0; (2.22)

subject to (from (2.4–2.7))

a! 1; B ! 0; as Y !1; (2.23)

a! 0; B ! Bs =
1+ ��2=3V

V
as Y ! �1 (2.24)

(here primes denote differentiation with respect toY ). From (2.21–2.24) an expansion of the
form

a(Y; �) = a0(Y ) + ��2=3a1(Y ) + � � � ;

B(Y; �) = B0(Y ) + ��2=3B1(Y ) + � � � ; (2.25)

V (�) = V0 + ��2=3V1 + � � �
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is suggested. At leading order we have

a00� a0B
2
0 = 0; (2.26)

B000 + V0B
0

0 + a0B
2
0 = 0; (2.27)

subject to (from (2.23–2.24))

a0 ! 1; B0 ! 0 as Y !1; (2.28)

a0 ! 0; B0 !
1
V0

as Y ! �1: (2.29)

If we now add Equations (2.26, 2.27) and apply
R
1

�1
� � � dY with boundary conditions (2.28,

2.29) we find that

B00 = 1� a0� V0B0: (2.30)

Thus we have to solve the Equations (2.26, 2.30) with boundary conditions (2.28, 2.29). A
consideration of these equations along the general lines given in [20], shows that there is
a unique minimum speedV0;min > 0 such that for allV > V0;min the solution forB0 has
algebraic decay asY ! 1 and that the solution has exponential decay asY ! 1 only
for V0 = V0;min. To determine the solution and this minimum speedV0 = V0;min we have to
proceed numerically, finding that

V0;min = 0�904977: (2.31)

We are now in a position to compare these results, given by the asymptotic solution, with
the full numerical solution of the initial system (2.2, 2.8). To do so note that, from (2.18, 2.19,
2.25)

vas � �(1+ 0�904977��2=3 + � � �); (2.32)

bass � 1�105001�2=3 + � � � (2.33)

at leading order (where the superscript ‘as’ denotes asymptotic). In Figure 1a we show
expression (2.32) by the dotted line, the agreement between the numerically computed values
and those obtained from the asymptotic theory is extremely good even at quite moderate values
of �. This is not unexpected as a consideration of the higher order terms in the expansion leads
to a leading order correction ofV1�

�2=3, with V1 determined numerically asV1 = 0�28652.
As a further check of our asymptotic analysis we also plotted(v��)��2=3 with v determined
from the numerical solution of Equations (2.2, 2.8). The results are shown in Figure 1b, where
they appear to be approaching the asymptotic value ofV �1

0;min as� increases.
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Figure 1.(a) A graph of the numerically computed minimum speedvmin (plotted against�) for the TWS for the
case of cubic autocatalysis(m = 2). The dotted line represents the asymptotic expansion (2.32) and the full line
the numerical speed obtained from an integration of the Equations (2.2, 2.8); (b) A graph of(v��)��2=3 (against
�) with v as in Figure 1a (obtained from a numerical integration of Equations (2.2, 2.8)) showing the asymptotic
approach toV �1

0;min. The numerical method used for these figures is similar to that explained in [14].

Finally we note that this analysis form = 2 can be extended in an obvious way to general
powers ofm, for which the appropriate scalings are

v = �+ �V; b = �2=(m+1)B; Y = �y;  =
m� 1
m+ 1

(m > 1): (2.34)

3. The initial-value problem

Here we consider the solution of the initial-value problem (IVP) (1.8–1.12) for the two cases
m = 1 andm = 2. We start in 3.1 by proving that our IVP is well-posed (i.e. admits a
unique solution at least locally in time). Then we show in 3.2 that the solution can be extended
globally in time by giving a priori bounds for the solution in the casesm = 1 andm = 2.
Finally, we discuss in 3.3 the numerical solutions of the IVP.

3.1. LOCAL EXISTENCE AND UNIQUENESS

Our main objective in this section is to show that the IVP (1.8–1.12) has local existence and
uniqueness. The technical difficulty is having to work in an unbounded spatial domain.

R1: There is aT0 > 0 such that the IVP (1.8–1.12) has a unique solution for(x; t) 2
(0;1)� [0; T0).

For the proof we apply the methods described in Henry [30]. To do so we need to recast
our IVP in the following functional setting. We take
 = (0;1) and

D(A) = C2(
)� C2(
)�R (3.1)

and define the linear operator

A(u1; u2; �) =

 
0;�

d2

dx2 + �
d

dx
;0

!
; (3.2)
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providedu2 ! 0 asx! 1 and�(@u2=@x) + �u2 = � = ��0 onx = 0. We can can then
extendA to a linear closed operator in the usual way (which we will still denote byA) on
X = L2(
)�L2(
)�R.A is then sectorial according to a result in Henry [30, pp. 20]. With

f :X1 = D(A)! X; f(u1; u2; �) = (�u1u
m

2 ; u1u
m

2 ;0) (3.3)

our IVP can be posed (withU = (u1; u2; �) 2 X) as

Ut +AU = f on X; U(0) = (1;0;0) 2 X: (3.4)

It is clear thatX1 � L2(
) � L2(
) � R and thatf is locally Lipschitz inU onX1. Thus
we can apply Theorem 3.3.3 from Henry [30, pp. 54] and deduce that there is aT0 > 0 such
that the problem (3.4) has a unique solution on(0; T0). In fact we can readily show (using
classical regularity theory results) thatU 2 C1(
) for 0 < t < T0.

3.2. GLOBAL EXISTENCE AND UNIQUENESS

R2: Let a(x; t); b(x; t) be a solution of out IVP for(x; t) 2 (0;1) � [0; T ], with T > 0
arbitrary. Then

0 6 a(x; t) 6 1; 0 6 b(x; t); (3.5)

for all (x; t) 2 (0;1)� [0; T ].
(a) The proof for the left-hand inequality follows from the fact that the region
 =

f(a; b); a; b > 0g is a positively invariant region for IVP with initial conditions (1.10) in

for all x > 0. By considering the kinetic termf = (�abm; abm) and taking due regard of the
behaviour asx ! 1 along the lines described by Merkinet al. [27] we see that the system
(1.8, 1.9) isf -stableand the result follows by applying theorem 14.11 from Smoller [28].

(b) For the right-hand inequality fora we readily see thata is decreasing int and from the
initial condition (1.10) the result follows directly.

We now establish global existence, starting with the casem = 1 (quadratic autocatalysis).
To do so we obtain a supersolution forb using scalar operators as follows. From (1.8) and R2
we readily deduce that

@b

@t
�
@2b

@x2 + �
@b

@x
� b = �b(1� a) 6 0; (3.6)

for all x; t > 0. By considering the linear parabolic operator

L[u] = ut � uxx + �ux � u; (3.7)

we see thatu = b and�u = �0 et are a subsolution and a supersolution respectively, since from
(3.6), (1.9, 1.10, 1.11) we have that

L[u] 6 0 = L[�u]; u(x;0) = 0 6 �0 = �u(x;0) (3.8)

and atx = 0; t > 0

�
@u

@x
+ �u = ��0 6 ��0 et = �

@�u

@x
+ ��u: (3.9)
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From (3.8, 3.9) it then follows, using the scalar comparison theorem for parabolic operators
(Grindrod [29]), that form = 1

R3 : b(x; t) 6 �0 et for all x; t > 0: (3.10)

Results R2 and R3, giving a priori bounds for the solutions of the IVP, then guarantee global
existence and uniqueness (form = 1), on applying Lemma 14.3 and Theorem 14.4 from
Smoller [28].

A more refined analysis is required to obtain a similar result forb in the casem = 2 (cubic
autocatalysis). To do this we apply an idea from Weissler [31] and start by consider the kinetic
system associated to our IVP

at = �ab
2; bt = ab2; a(0) = 1; b(0) = b0 > 0: (3.11)

It is readily deduced that solutions to (3.11) exist globally and are bounded fort > 0. In fact
b is monotonically increasing withb ! 1+ b0 ast ! 1 anda is monotonically decreasing
with a! 0 ast!1. We denoted byB(b0; t) the solution to (3.11)) forb.

Next we consider the following initial-value problem

ut = uxx � �ux; (3.12)

u(x;0) = b0; �ux + �u = ��1 at x = 0; u! �2 as x!1; (3.13)

with �1; �2 > 0. It is easily established that, for�1 6= �2, (3.12–3.13) has a unique positive
solution which we denote byu(x; t), which is monotone on the spatial domain(0;1). We
now claim that, with appropriate choices forb0; �1; �2;�b(x; t) = B(u(x; t); t) is an upper
solution forb as a solution to our IVP (1.8–12). To see this note that

�b(x;0) = b0 > 0 = b(x;0); (3.14)

��bx + ��b = ��1 > ��0 = �bx + �b at x = 0; t > 0 if �1 > �0; (3.15)

�b! �2 > 0 and b! 0 as x!1: (3.16)

Also, for givenx; t in our domain we consider the nonlinear parabolic operator

N [u] = ut � uxx + �ux � au2: (3.17)

We note that (1.8) gives with initial conditions (1.10) that

a(x; t) = exp
�
�

Z
t

0
bm(x; s)ds

�
6 1 (3.18)

and we have thata is a function ofb only, thus givingN as a scalar operator. Then we have
that

N [b] = 0; (3.19)

N [�b] = Bu(ut � uxx + �ux) +Bt �Buuu
2
x � (1+ u�B)B2 = �Buuu

2
x: (3.20)
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Thus we are naturally led to study the behaviour ofB(b0; t) with respect withb0. We recall
that from (3.11) we haveb0 6 B(b0; t) < 1+ b0 for all t > 0. Furthermore, the following
lemma gives the required information on the behaviour of the solutionB(b0; t) with respect
to the initial condition.

LEMMA 1. For all b0 > 0 we have

(1) (@B=@b0) > 0 for all t > 0,
(2) (@2B=@b2

0) 6 0 for all t > 0 andb0 > 0 sufficiently large(in practiceb0 > 25suffices).

The proof of these results is given in the Appendix. In view of result (2) of the above lemma
we can always assure that the final term in (3.20) is positive. In fact we have form the above
that

(i) Bu > 0 for all x; t > 0,
(ii) Buu 6 0 for all x; t > 0 andu > 0 sufficiently large.

To see that�b is an upper solution we notice that the solutionu of the initial-value problem
(3.13–3.14) can always be made sufficiently large with suitable choices forb0; �1; �2 > 0,
and we again conclude, on using the comparison theorem for the scalar parabolic operatorN
[29] that form = 2

R4: b(x; t) 6 �b(x; t); (3.21)

with �b uniformly bounded.
The a priori bounds given in R2 and R4 establish global existence and uniqueness for

m = 2, again from Smoller [28]. An examination of these results (in particular the method
of obtaining an upper solution forb whenm = 2) shows that the method can be extended to
general integer values ofm > 1 in an obvious way, giving global existence and uniqueness
for these cases as well. We expect from physical considerations (and this is also confirmed
by the numerical results presented in the next section) that for eachm > 1 the solutions to
the corresponding IVP have global existence and uniqueness property. However, this is left
unresolved at this stage.

Our results extend significantly the corresponding properties of the solutions to the IVP
considered in previous work on simple autocatalytic reaction-diffusion systems (see [14] and
references therein, for example) where upper bounds on the autocatalyst concentration were
not given previously.

We now consider numerical solutions to the initial-value problem (1.8–1.12). These confirm
our analytically derived predictions and extend the results to general values of the parameters.

3.3. NUMERICAL SOLUTIONS OF THEIVP

We solved the initial-value problem (1.8–1.12) using the method described in Merkinet
al. [23]. This is essentially a Crank-Nicolson discretization method coupled with Newton-
Raphson iteration to solve the systems of nonlinear algebraic equations that are formed at each
time step. The algorithm allows an adjustable time step to be used so as to try and maintain a
prescribed overall accuracy. We performed a relatively large set of numerical integrations by
varying our parameters�; �; �0. In the results described below we chose representative values
of these parameters (similar results were obtained for all the cases we tried).
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We start our discussion by first taking the case with quadratic autocatalysis(m = 1).
Figures 2a, 2b show concentration profiles fora and b, taken at equal time intervals for
the case� = 1�0, � = 1�0, �0 = 1�0. These profiles show the formation and propagation
of travelling waves of permanent-form approaching a steady velocity ast increases. We
have confirmed this by numerically computing the position and the velocity of the reaction-
diffusion-advection fronts. This has been done by two different procedures (which enabled
us to check the accuracy of each). Specifically we computed the position of the front as the
point wherea(x; t) = 0�5. Then these values where used to compute the velocity of the front
by numerically differentiating (with central differences). The other procedure was to use an
integral method which essentially used the approximated formulaxw =

R
1

0 (1� a)dx (with
xw denoting the referenced front position and where the integral was computed using the
trapezium method). Both these two methods gave very good agreement. We can see from
Figure 2b that the travelling front left behind a region whereb = 1�5 = bs (in agreement with
the result P3). Also the large time velocity of the waves is, in this case,v = 3 = vmin = �+2
(the minimum speed as given from P8). This can be seen in Figure 4 where we plot the position
of the travelling waves fronts evolved from the initial-value problem for the cases:� = 0;1;5
(with � = 1�0,�0 = 1�0). We can see that in all the cases the front positions describe straight
lines in time with constant slope giving the minimum speedvmin = �+ 2.

We have also studied the influence of the boundary condition atx = 0 by varying�
(the parameter related to the mass transfer of the autocatalyst). In Figure 3 we show the
concentration profile ofb for the case� = 0�1, � = 1�0, �0 = 1�0 in order to compare
it with the case in Figure 2b. Both graphs show that as time increases the concentration of
the autocatalyst at the boundaryx = 0 approaches that of the reservoir concentration�0 or,
equivalently,

lim
t!1

@b

@x
= 0; (3.22)

(in which case the Robin boundary condition atx = 0 transforms to a Dirichlet type boundary
condition) a result which shows that the long time structure arising from the initial-value
problem is independent of the influence of the boundaries provided the flow reactor is very
long. Also, our numerical integrations show (and the above figures depict) that the rate of
this approach ofb to �0 at x = 0 is dependent on the value of�, the larger the value of�
the faster the convergence. Another common feature seen in theb-profiles is that there is an
initial over-production in the autocatalyst which is then spread out by convection and diffusion
before the reaction becomes the dominant part. As expected this is less pronounced in the case
in Figure 3 (smaller value of�) comparing with that in Figure 2b. Finally, we add that result
(3.22) was obtained in all the cases we tried.

Figures 5a, 5b show the influence of the reservoir concentration (reflected by�0) upon
the development of the travelling wave front. Here we took� = 1�0; � = 1�0 and we varied
�0 (by taking�0 = 2�0 in Figures 5a and�0 = 0�5 in Figure 5b). This corresponds to the
opposing cases ‘over-driven’ and ‘under-driven’ in the autocatalyst concentration initiation,
respectively. We see that in all the cases the long time wave structure which develops is
independent of the value of�0 leaving behind a region whereb = 1�5 = bs and travelling with
the minimum possible velocityv = 3 = vmin = � + 2 as given by P3 and P8, respectively.
In all cases the long time structure is a travelling reaction-diffusion wave of permanent form
propagating with its minimum possible speed. At the rear of this is a region in which the
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the concentration of reactantA is zero and that of autocatalystB isbs (as given by (2.7)). There
is then an adjustment of this concentration to�0 (the autocatalyst reservoir concentration)
through a convection-diffusion wave which propagates with speed� (< vmin) and in which

b(x; t) � �0 +
(bs � �0)p

�

Z
�

�1

e�s
2
ds; � =

x� �t

2
p
t
; ast!1: (3.23)

Figure 2. Concentration profiles shown at equal time intervals for� = 1�0, � = 1�0, �0 = 1�0 for (a)a, (b) b
(quadratic autocatalysis). We see the approach to a TWS travelling with constant velocity.

Figure 3. Concentration profile forb for � = 1�0,
� = 0�1, �0 = 1�0 (quadratic autocatalysis).

Figure 4. Successive positions of the TWS for the
case� = 1�0, � = 1�0 and three different values of
� = 0; 1; 5 (quadratic autocatalysis).
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Figure 5. The influence of the boundary condition (quadratic autocatalysis): concentration profiles forb for� = 1�0,
� = 0�1 and two different values of�0: (a)�0 = 0�5, (b)�0 = 2�0.

Figure 6. Concentration profiles for the case� = 1�0, �0 = 1�0 for (a)a, (b) b (cubic autocatalysis).

We now consider the case of the cubic autocatalysis(m = 2). From the above discussion
we have seen that any wave structure which develops as a long time solution of the initial-
value problem (1.8–1.12) is in effect independent of the type of boundary condition applied
at x = 0, provided this gives a correct qualitative description of the contact between the
reservoir and the flow reactor (see (3.22)). We chose, therefore, to apply (without any real
loss in generality) a Dirichlet boundary condition at the boundaryx = 0 (b(0; t) = �0, for
all t > 0) for the numerical results described below. Figures 6a, 6b present the concentration
profiles fora andb in the case� = 1�0, �0 = 1�0. These show the propagation of travelling
waves of permanent form which move with constant velocity. The numerical integrations give
that theb travelling wave leaves behind a region whereb is a constantbs (with bs = 1�854)
and that this wave is moving with the minimum possible speedv = vmin = 2�172 in this
case. The value attained at the rear of the wave is independent of the concentration of the
reservoir (being an intrinsic feature of the long time structure developed) as several numerical

engi650.tex; 30/01/1998; 13:32; v.7; p.14



Travelling waves in a differential flow reactor with simple autocatalytic kinetics171

integrations with different values of�0 show in Figures 7a (with�0 = 0�5) and 7b (with
�0 = 2�0). Finally, we checked the influence of varying the flow rate� upon the movement
of the reaction-diffusion-convection front. Figure 8 shows the result of the front position,xw,
as a function of time for three different flow rates� (here� = 0;1�0 and 5�0 respectively)
showing that the long time evolving structure is travelling with a constant velocity given by
the slopes of the straight lines appearing in the figure. These slopes correlate well with the
values of the wave speed obtained from the numerical integrations of Equations (2.2, 2.3). As
expected the larger the� the faster the wave propagates.

Figure 7. Concentration profiles for� = 1�0 and two different values of�0: (a) �0 = 0�5, (b) �0 = 2�0 (cubic
autocatalysis).

Figure 8. Successive positions of the TWS for�0 = 1�0 and three different values of�: � = 0; 1; 5 (cubic
autocatalysis).

engi650.tex; 30/01/1998; 13:32; v.7; p.15



172 J.H. Merkin et al.

4. Conclusions

In this paper we studied a simple prototype model for a differential flow reactor which
accounts for the effects of applying a flow of autocatalyst in a system with simple reaction
kinetics. This problem falls into the larger context of studying the possible destabilisation
of the homogeneous reference state of a chemical system which causes the medium to self-
organise into a pattern of travelling waves through the differential flow instability, the so
called DIFICI mechanism as mentioned in the Introduction. However, in all the previous work
on the DIFICI context the theoretical framework was set up using a circular flow reactor
(with corresponding periodic boundary conditions being applied at its ends). This is not very
realistic and thus motivates our present work which considered a differential flow reactor in
a form of a long, thin tube (with the transversal effects being neglected). A reaction is then
initiated based on the autocatalytic kineticsA +mB ! (m + 1)B, ratekabm (m = 1;2).
The physical problem considered is a practical experimental situation in which the reactantA
(present initially at uniform concentration everywhere) is immobilised within the reactor. The
differential flow mechanism manifests then via the flow (with constant velocity) and diffusion
of the autocatalytic species through the reaction region.

We considered the spatio-temporal structures supported by such a physical configuration
by analysing the resulting equations in some detail. Although no instabilities were found
we showed that the system can support permanent form travelling-wave solutions (TWS),
establishing the properties of these minimum speed TWS in terms of the parameters of the
problem. Further insights into these solutions were provided by the analysis of the full initial-
value problem (IVP) for which, in the main two cases of interest(m = 1;2) we established
that that these are the only long-time solutions supported. This follows from the properties
of uniqueness and global existence for the solutions of the IVP derived in Section 3.2. The
numerical solutions have confirmed the analytical results and have shown that in all the cases
the long time solution evolved into a travelling reaction-diffusion wave with permanent form
propagating with its minimum possible speed thus suggesting that these are stable. At the rear
of this wave there is a region in which the concentration of reactantA is zero with that ofB
given by (2.7). Then there is an adjustment of this to the autocatalyst reservoir concentration
through a convection-diffusion wave which propagates with speed� < vmin; these two waves
are consequently separating relative to each other.

We expect to encounter more interesting behaviour in a differential flow reactor with
a similar physical configuration but with chemistry being based on a more realistic (and
complicated) kinetics such as the cubic autocatalator (or the Gray–Scott model). This situation
is presently being considered in detail by the authors.

Appendix

Here we establish the validity of the assertions (1) and (2) of Lemma 1.
Equation (3.11) is readily solved to get, on using the notationc = b0 > 0

lnB
(1+ c)2 �

ln(1+ c�B)

(1+ c)2 �
1

B(1+ c)
=

ln c
(1+ c)2 �

1
c(1+ c)

+ t for all t > 0: (A1)

From (A1) we then find, with the notationB0 = @B=@c, that

c2(1+ c)B0 = 2(cB)2(1+ c�B)t+B2(1+ c�B) + c2B > 0 for all t > 0; (A2)
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since

c 6 B < 1+ c for all t > 0: (A3)

This establishes the first assertion of the lemma. We then differentiate A2 once more with
respect toc to get, after some calculation

cB00 = B2G(c;B; t); (A4)

whereG is the polynomial

G(c;B; t) = (1+ c�B)(8t2c5B + 6tc4 + 8t2c4B

�12t2c4B2 + 8tc3B + c2� 12t(cB)2 +

+8tc2B � 2c+ 2cB + 2B � 3B3): (A5)

This can also be written as

G(c;B; t) = (1+ c�B)(C2(c;B)t2 + C1(C;B)t+ C0(c;B)); (A6)

with

C2(c;B) = 4c4B(2+ 2c� 3B); (A7)

C1(c;B) = 2c2(�6B2 + 4(1+ c)B + 3c2); (A8)

C0(c;B) = (c�B)(c� 2+ 3B): (A9)

From (A7–A9) it is readily established that

C2 < 0 for all c > 2; C1 > 0 and C0 < 0 for all c > 0: (A10)

From (A4, A6–A10) we then have that the sign ofB00 is given by the sign of

4C2C0� C2
1 = �4c5(�2(1+ c)B2 + 16(1+ c)2B + 9c3); (A10)

which is found to be negative for all

c > c� = 24�9738: : : : (A11)

Thus we conclude that for allc > c� we haveB00 < 0 for all t > 0 which establishes the
second assertion and our lemma is proved.

Acknowledgements

We would like to thank Professor B.D. Sleeman (Leeds University) for suggesting the use of
Weissler’s idea for getting an upper solution forb in the casem = 2. RAS acknowledges the
financial support from ORS and Leeds University.

References

1. R. Kapral and K. Showalter (eds),Chemical Waves and Patterns. Dordrecht: Kluwer Academic Publishers
(1995) 640 pp.

engi650.tex; 30/01/1998; 13:32; v.7; p.17



174 J.H. Merkin et al.

2. M.A. Marek, S.C. M̈uller, T. Yamaguchi and K. Yoshikawa (eds),Dynamism and Regulation in Nonlinear
Chemical Systems. Amsterdam: North-Holland (1995) 317 pp. See also the special issue ofPhysica D84
(1995).

3. B.R. Johnson and S.K. Scott, New approaches to chemical patterns.Chem. Soc. Rev.25 (1996) 265–273.
4. A.M. Turing, The chemical basis of morphogenesis.Philos. Trans. Roy. Soc.B327 (1952) 37–72.
5. J.D. Murray,Mathematical Biology. Berlin: Springer-Verlag (1990) 767 pp.
6. V. Castets, E. Dulos, J. Boissonade and P. DeKepper, Experimental evidence of a sustained standing Turing-

type non-equilibrium chemical pattern.Phys. Rev. Lett.64 (1990) 2953–2965.
7. I.R. Epstein and I. Lengyel, Turing structures. Progress toward a room temperature, closed system.Physica

D 84 (1995) 1–11.
8. A.B. Rovinsky and M. Menzinger, Chemical instability induced by a differential flow.Phys. Rev. Letters69

(1992) 1193–1196.
9. A.B. Rovinsky and M. Menzinger, Self-organisation induced by the differential flow of activator and inhibitor.

Phys. Rev. Letters70 (1993) 778–781.
10. M. Menzinger and A.B. Rovinsky, The differential flow instabilities. In: R. Kapral and K. Showalter (eds),

Chemical Waves and Patterns. Dordrecht: Kluwer Academic Publishers (1995) 365–397.
11. X.-G. Wu, S. Nakata, M. Menzinger and A.B. Rovinsky, Differential flow instability in a tubular flow reactor:

its convective nature.J. Phys. Chem.100 (1996) 15810–15814.
12. S. Ponce Dawson, A. Lawniczak and R. Kapral, Interactions of Turing and flow-induced chemical instabilities.

J. Chem. Phys.100 (1994) 5211–5218.
13. R.A. Satnoianu, J.H. Merkin and S.K. Scott, Differential flow induced instability in a cubic autocatalator

system. To appear inJ. Eng. Math..
14. M.J. Metcalf, J.H. Merkin and S.K. Scott, Oscillating wave fronts in isothermal chemical systems with

arbitrary powers of autocatalysis.Proc. R. Soc. Lond. A447 (1994) 155–174.
15. A. Saul and K. Showalter, Propagation reaction-diffusion fronts. In: R.J. Field and M. Burger (eds),Oscilla-

tions and Travelling Waves in Chemical Systems. New York: Wiley (1985) 681 pp.
16. R.J. Field and R.M. Noyes, Oscillations in chemical systems. IV Limit cycle behaviour in a model of a real

chemical reaction,J. Chem. Soc.60 (1974) 1877–1884.
17. J.H. Merkin, D.J. Needham and S.K. Scott, A simple model for sustained oscillations in isothermal chain-

branching or autocatalytic reactions in a well stirred, open system.Proc. R. Soc. Lond. A398 (1985) 81–116.
18. E.E. Selkov, Self-oscillations in glycolysis, 1. A simple kinetic model.Eur. J. Biochem.4 (1968) 79–86.
19. J. Billingham and D.J. Needham, The development of travelling waves in quadratic and cubic autocatalysis

with unequal diffusion rates. I. Permanent form travelling waves.Phil. Trans. R. Soc. Lond. A334 (1991)
1–25.

20. J. Billingham and D.J. Needham, A note on the properties of a family of travelling-wave solutions arising in
cubic autocatalysis.Dynamics and Stability of Systems, 6 (1991) 33–49.

21. J. Billingham and D.J. Needham, The development of travelling waves in quadratic and cubic autocatalysis
with unequal diffusion rates. III: Large time development in quadratic autocatalysis.Quart. Appl. Math.L2
(1992) 343–372.

22. J.H. Merkin and D.J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic
autocatalytic chemical system.J. Eng. Math.23 (1989) 343–356.

23. J.H. Merkin, D.J. Needham and S.K. Scott, The development of travelling waves in a simple isothermal
chemical system. I. Quadratic autocatalystis with linear decay.Proc. R. Soc. Lond. A424 (1989) 187–209.

24. D.J. Needham and J.H. Merkin, The development of travelling waves in a simple isothermal chemical system
with general orders of autocatalysis and decay.Proc. R. Soc. Lond. A337 (1991) 261–274.

25. J.H. Merkin and D.J. Needham, Reaction-diffusion waves in an isothermal chemical system with general
orders of autocatalysis and spatial dimension.ZAMP44 (1993) 707–721.

26. J. Guckenheimer and P. Holmes,Nonlinear Oscillators, Dynamical Systems and Bifurcation of Vector Fields.
New York: Springer-Verlag, second printing (1986) 459 pp.

27. J.H. Merkin, D.J. Needham and S.K. Scott, Coupled reaction-diffusion waves in an isothermal autocatalytic
chemical system.IMA J. Appl. Math.50 (1993) 43–76.

28. J. Smoller,Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag second edition (1994)
632 pp.

29. P. Grindrod,Patterns and Waves(The Theory and Applications of Reaction-Diffusion Equations). Oxford:
Clarendon Press (1991) 239 pp.

30. D. Henry,Geometrical Theory of Semilinear Parabolic Equations. New York: Springer-Verlag, Lectures
Notes in Math. 840 (1981) 348 pp.

31. F.B. Weissler, Single point blow-up of semilinear initial value problem.J. Diff. Eqs.55 (1984) 204–224.

engi650.tex; 30/01/1998; 13:32; v.7; p.18


